Exploring a coarse-grained distributive strategy for finite-difference Poisson–Boltzmann calculations
نویسندگان
چکیده
We have implemented and evaluated a coarse-grained distributive method for finite-difference Poisson-Boltzmann (FDPB) calculations of large biomolecular systems. This method is based on the electrostatic focusing principle of decomposing a large fine-grid FDPB calculation into multiple independent FDPB calculations, each of which focuses on only a small and a specific portion (block) of the large fine grid. We first analyzed the impact of the focusing approximation upon the accuracy of the numerical reaction field energies and found that a reasonable relative accuracy of 10(-3) can be achieved when the buffering space is set to be 16 grid points and the block dimension is set to be at least (1/6)(3) of the fine-grid dimension, as in the one-block focusing method. The impact upon efficiency of the use of buffering space to maintain enough accuracy was also studied. It was found that an "optimal" multi-block dimension exists for a given computer hardware setup, and this dimension is more or less independent of the solute geometries. A parallel version of the distributive focusing method was also implemented. Given the proper settings, the distributive method was able to achieve respectable parallel efficiency with tested biomolecular systems on a loosely connected computer cluster.
منابع مشابه
Highly accurate biomolecular electrostatics in continuum dielectric environments
Implicit solvent models based on the Poisson-Boltzmann (PB) equation are frequently used to describe the interactions of a biomolecule with its dielectric continuum environment. A novel, highly accurate Poisson-Boltzmann solver is developed based on the matched interface and boundary (MIB) method, which rigorously enforces the continuity conditions of both the electrostatic potential and its fl...
متن کاملElectrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملOn removal of charge singularity in Poisson-Boltzmann equation.
The Poisson-Boltzmann theory has become widely accepted in modeling electrostatic solvation interactions in biomolecular calculations. However the standard practice of atomic point charges in molecular mechanics force fields introduces singularity into the Poisson-Boltzmann equation. The finite-difference/finite-volume discretization approach to the Poisson-Boltzmann equation alleviates the num...
متن کاملPBEQ-Solver for online visualization of electrostatic potential of biomolecules
PBEQ-Solver provides a web-based graphical user interface to read biomolecular structures, solve the Poisson-Boltzmann (PB) equations and interactively visualize the electrostatic potential. PBEQ-Solver calculates (i) electrostatic potential and solvation free energy, (ii) protein-protein (DNA or RNA) electrostatic interaction energy and (iii) pKa of a selected titratable residue. All the calcu...
متن کاملSimultaneous Iterative Boltzmann Inversion for Coarse-Graining of Polyurea
Polyurea is an alternating copolymer with excellent viscoelastic properties for dissipating shock and impact loads; however, a molecular-level understanding of how its chemistry relates to its performance remains elusive. While molecular dynamics simulations can in theory draw connections between molecular structure and viscoelastic properties, in practice the long relaxation times associated w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2011